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Introduction

Pain information processing starts from activation of peripheral 
nociceptors, causing action potentials to propagate along the 
primary afferent nerve fibers into sensory neurons in dorsal root 
ganglia (DRG). They are further relayed to the spinal dorsal horn 
through the central axons of sensory neurons. The action poten-
tials reaching the central terminals of sensory afferents can cause 
membrane depolarization, activation of voltage-gated calcium 
channels (VGCCs), and calcium influx, which triggers synap-
tic vesicle exocytosis. This then leads to the release of excitatory 
neurotransmitters including glutamate, pain-inducing peptides 
such as substance P and calcitonin gene-related peptide (CGRP) 
into the synaptic cleft. These neurotransmitters can then cause 
activation of post-synaptic dorsal horn projection neurons and 
interneurons, leading to spinal modulation of sensory signals. 
Certain types of VGCC can also regulate the excitability of DRG 
primary sensory neurons and dorsal horn neurons. In addition, 
VGCCs may contribute to ascending and descending modula-
tion of sensory signals. Thus, changes in expression and func-
tions of VGCCs in pain-inducing conditions can be potential 
targets for chronic pain management.

VGCCs can be classified based on their voltage activation char-
acteristics as high- or low-voltage activated channels. The VGCCs 
can be further subdivided based on their structural similarities of 
the channel-forming α

1
-subunit (Ca

V
1, Ca

V
2, Ca

V
3) or their sen-

sitivity to blockade by pharmacological agents (L, N, P/Q, R and 
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voltage-gated calcium channels (vGCC) play obligatory 
physiological roles, including modulation of neuronal 
functions, synaptic plasticity, neurotransmitter release and 
gene transcription. Dysregulation and maladaptive changes 
in vGCC expression and activities may occur in the sensory 
pathway under various pathological conditions that could 
contribute to the development of pain. in this review, we 
summarized the most recent findings on the regulation of 
vGCC expression and physiological functions in the sensory 
pathway, and in dysregulation and maladaptive changes of 
vGCC under pain-inducing conditions. The implications of 
these changes in understanding the mechanisms of pain 
transduction and in new drug design are also discussed.
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T-type). Collectively, the high-VGCCs include L-(Ca
V
1.1, Ca

V
1.2, 

Ca
V
1.3, Ca

V
1.4), P/Q-(Ca

V
2.1), N-(Ca

V
2.2) and R-(Ca

V
2.3) type 

channels, while the low-VGCCs include T-type (Ca
V
3.1, Ca

V
3.2, 

Ca
V
3.3) channels. The high-VGCCs typically form heteromultim-

ers that consist of the channel-forming α
1
-subunit along with aux-

iliary β-, α
2
δ and γ-subunits.1 Even through conclusive findings 

are not yet available, data from co-expression and electrophysi-
ological recording experiments support that the low-VGCCs seem 
to be α

1
-subunit monomers.2

So far, ten α
1
-subunits have been identified in mammals and 

are encoded by distinct genes.1 This subunit is also subjected to 
alternative splicing.3-11 The α

1
-subunit consists of four homolo-

gous domains (I–IV), each having six transmembrane helices 
(S1 through S6), which together form the calcium conduction 
pore, voltage sensors and gating apparatus.12 The S4 transmem-
brane domain contains positive charged amino acids for volt-
age sensing. There are four known β-subunits (β-1 through 
β-4), which are intracellular proteins that enhance cell surface 
expression of the α

1
-subunits and modulate the gating properties 

through their interactions with the channel-forming α
1
-subunit 

and intracellular signaling molecules.13-15 Four α
2
δ-subunits have 

been identified (α
2
δ-1 through α

2
δ-4), each consisting of two 

disulfide-linked peptides (α
2
 and δ) that are encoded by the same 

gene.16,17 Similar to the β-subunit, α
2
δ subunits promote and 

stabilize cell surface expression of VGCCs.18,19 Eight γ-subunits 
have been identified and appear to act as glycoproteins with four 
transmembrane segments, but the exact function of the γ-subunit 
is not well defined.20,21 Together, the auxiliary subunits modulate 
the functional properties of the α

1
-subunit.

The biophysical properties of the channel-forming α
1
-subunit 

and tissue-specific distribution of VGCCs play a critical role in 
governing different pathophysiological functions of VGCCs.1 
Regulation of VGCC function by various signaling molecules 
and pathways adds another level of control. In addition, alterna-
tive splicing could control the coupling of VGCCs to signaling 
pathways and ultimately their functions.3,6,8,11,22-27 For example, 
Ca

V
1 VGCCs and Ca

V
2 VGCCs are regulated by protein phos-

phorylation and G-proteins, respectively.28 Ca
V
3 VGCCs are 

regulated by various kinases and G-protein pathways as summa-
rized by recent reviews in references 21 and 29. Based on the 
functional diversity, tissue specific distribution and coupling to 
different signaling pathways, these VGCCs play distinct roles 
in physiological processing of sensory information. In addition, 
they could become the target of maladaptive neuroplasticity 
under pain-inducing conditions, leading to the development of 
sensory hyperexcitability and behavioral hypersensitivity (pain). 
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h yperexcitability and behavioral hypersensitivity in the spinal 
nerve ligated neuropathic pain model, supporting that Ca

V
1.2 

dysregulation may contribute to chronic pain maintenance.39 
These findings contradict previous findings showing that intra-
thecal administration of L-type channel blockers (verapamil, 
diltiazem and nimopidine) had no effect on pain behaviors in 
neuropathic pain models derived from spinal nerve ligation,41 
diabetic and vincristine-induced neuropathies.42,43 These discrep-
ancies may be due to Ca

V
1 subtype selectivity of the agents.

L-type channels are also implicated pharmacologically in mor-
phine-induced analgesia and chronic tolerance. Administration 
of L-type channel antagonists nifedipine and verapamil enhances 
morphine analgesia and attenuates the development of mor-
phine tolerance,44,45 which is in agreement with the notion that 
increased calcium entry is associated with morphine tolerance.46 
Chronic nimopidine and morphine co-administration has syn-
ergistic interactions resulting in an increase in morphine anti-
nociception effects.45 However, there are some discrepancies 
regarding the contribution of VGCC subtypes to morphine anal-
gesia and tolerance in biochemical studies. Coadministration of 
nimopidine and morphine leads to a decrease in Ca

V
1.2 and an 

increase in Ca
V
2.2 channel expression while chronic morphine 

administration causes an increased expression of both channels 
in the superficial dorsal horn.47 Western blot data from another 
study demonstrate a decreased level of Ca

V
1.3, but not Ca

V
1.2 

and Ca
V
2.2 channels in brain stem after chronic morphine treat-

ment.48 It is likely that morphine analgesia and tolerance are 
mediated by distinct VGCC subtypes at different locations, 
which might be distinguished by local treatment with subtype-
selective pharmacological agents. Identifying VGCC subtypes 
underlying morphine analgesia and tolerance with other means 
would be critical for further advancement in the field.

P/Q-Type Voltage-Gated Calcium Channels

Ca
V
2.1 P/Q-type channels are expressed at the pre-synaptic 

terminals in the spinal dorsal horn and may play a role in neu-
rotransmitter release (reviewed in ref. 49). Ca

V
2.1 is encoded by a 

single gene, and P- and Q-type channels differ in their ω-agatoxin 
IVA sensitivity and inactivation kinetics.50 It is hypothesized that 
alternative splicing of the Ca

V
2.1 gene results in the phenotypic 

variants of P- and Q-type channels, and P-type channels derive 
from post-translational modifications or modulation of putative 
proteins.4,11

The involvement of P/Q-type channels in pain processing 
is not well understood. P/Q-type channels show little colocal-
ization with substance P and treatment with ω-agatoxin IVA, 
a specific inhibitor of P/Q-type channels, has no effect on the 
release of either substance P or CGRP from peptidergic sen-
sory neurons.33,51 This suggests that P/Q-type channels are not 
involved in the release of these pain-inducing neurotransmitters 
from primary afferents. Instead, P/Q-type channels are highly 
expressed in dorsal horn laminae II-VI pre-synaptic terminals, 
where polysynaptic inputs exist.33 It has been suggested that 
P/Q-type channels may be involved in the release of excitatory 
and inhibitory transmitters in spinal dorsal horn.52,53 Data from 

Therefore, correcting VGCC dysregulation and maladaptive 
changes in the sensory pathway represents an attractive approach 
for the development of therapeutic agents for tailored pain man-
agement under different pain-inducing etiologies. Accordingly, 
the focus of this review is on our recent understanding of VGCC 
regulation and function in the sensory pathway under normal 
and pain-inducing conditions and the potential contributions of 
changes in VGCC expression/function to pain processing.

L-Type Voltage-Gated Calcium Channels

L-type channels are widely distributed in the central nervous 
system, cardiac muscles, smooth and skeletal muscles, retina, 
sinoatrial node and cochlear hair cells.20,30 In the superficial dor-
sal horn, L-type channels are expressed mainly on neuronal cell 
body and dendrites, mediating the activation of calcium-depen-
dent enzyme activities, gene transcription, synaptic signaling and 
plasticity, as well as the activation of other ion channels such 
as calcium-activated potassium channels.31-35 Membrane depo-
larization with high voltages results in prolonged activation of 
L-type channels due to slow inactivation kinetics, which lead to 
extended calcium influx over a long period of time.36 Increased 
intracellular calcium in neuronal cell body and dendrites can lead 
to subsequent alterations in dorsal horn neuron excitability due to 
calcium-dependent activation of signaling pathways, receptors/
ion channels and altered gene transcription. As a consequence, 
these changes can lead to enhanced excitability of dorsal horn 
projection neurons, excitatory interneurons, and/or reduced 
excitability of inhibitory interneurons, which can cause behav-
ioral hypersensitivity, leading to increased pain perception.

Four different isoforms exist for L-type channels (Ca
V
1.1–

Ca
V
1.4), with Ca

V
1.2 and Ca

V
1.3 being strongly expressed in 

neurons.37 The biophysical properties of Ca
V
1.3 differ from other 

isoforms, in that they are activated faster and at more negative 
membrane potentials. Thus, Ca

V
1.3 can contribute to spontane-

ous neuronal firing.30 Dysregulation of Ca
V
1.3 under pain-induc-

ing pathological conditions could thus potentially contribute to 
enhanced dorsal horn neuron hyperexcitability. The regulation 
of L-type channel functions in neurons by intracellular signaling 
molecules has been reviewed recently.30 It has been shown that 
regulation of L-type channel α

1
-subunits by cAMP-dependent 

protein kinase or protein kinase A can enhance current activity. 
In contrast, both calmodulin and calcium binding proteins can 
regulate calcium-dependent inactivation and calcium-dependent 
facilitation of Ca

V
1 channels.30,38

In neuropathic pain models, L-type channels are shown to be 
dysregulated in DRG and the spinal cord. For example, Ca

V
1.2 

and Ca
V
1.3 are downregulated in rat DRG neurons following 

chronic constriction injury of the sciatic nerve,32 and Ca
V
1.2 

is upregulated in the spinal cord post spinal nerve ligation in 
a manner that is correlated with behavioral hypersensitivity.39 
Ca

V
1.2 channels are also expressed within the anterior cingu-

lated cortex, and may be involved in fear learning and behavioral 
pain responses.40 Knockdown of the Ca

V
1.2 L-type channel via 

intrathecal peptide nucleic acid based anti-sense strategies and 
small interfering RNA (siRNA) reverses dorsal horn neuron 
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differences between the secondary binding sites for these toxins.69 
Thus, modulation of N-type channels by ω-conotoxin GVIA 
and its derivatives may provide a proof of concept for the devel-
opment of new state-dependent N-type VGCC blockers for pain 
management.

Omega-conotoxin MVIIA (Ziconotide or Prialt, Elan 
Pharmaceuticals Inc., San Diego, CA) is the first N-type channel 
antagonist approved by the US Food and Drug Administration 
and European Medicines Agency for management of chronic 
severe pain refractory to other current pain medications. Data 
from pre-clinical studies have shown that intrathecal adminis-
tration of ω-conotoxin MVIIA inhibits hyperalgesia and allo-
dynia in neuropathic and inflammatory pain models.70 Due to 
the wide-distribution of N-type channels and the peptidergic 
nature of the drug, its application is limited to intrathecal deliv-
ery (reviewed in ref. 71). A recent study introduced a new small 
molecule, N-triazole oxindole TROX-1, an inhibitor of Ca

V
2.2 

N-type channels that can be administered orally. TROX-1 is able 
to reverse inflammatory-induced hyperalgesia and nerve-injury 
induced allodynia to the same extent as current anti-inflamma-
tory and neuropathic pain drugs.72 A substantial effort has been 
made towards developing small molecule N-type channel block-
ers that may be efficacious in pain management post systemic 
administration (reviewed in ref. 73).

Modulation of N-type channels for sensory information 
 processing can occur through voltage-dependent inhibition by the 
Gβγ subunit of G-proteins, and voltage-independent inhibition 
by protein tyrosine kinase in DRG neurons. Inhibition of N-type 
channel currents upon Gβγ binding can be reversed by protein 
kinase C-dependent phosphorylation of the Gβγ binding site of 
the N-type VGCC.28,74,75 Interestingly, activation of μ-opioid 
receptors results in inhibition of N-type channels through Gβγ 
subunits.76,77 Similar activation of ORL1 (opioid receptor-like 
1) receptors (also known as nociceptin receptors) has also been 
shown to inhibit N-type channels through a G-protein mediated 
mechanism in the absence of the ligand nociceptin.78 In addi-
tion, ORL1 receptors have been shown to heterodimerize with 
μ-opioid receptors and associate with N-type channels, resulting 
in internalization of N-type channels. By doing so, the ORL1 
receptor appears to act as a physical link between μ-opioid recep-
tors and N-type channels to modulate opioid receptor mediated 
regulation of channel activity and trafficking.79 Prolonged expo-
sure to the ORL1 receptor agonist nociceptin leads to protein 
kinase C-dependent internalization of N-type channel com-
plexes and consequently downregulated calcium entry, a regula-
tory means that could have significant implication in controlling 
N-type channel functions in sensory pathway.80

Identification of alternative splicing of the N-type VGCC 
α

1
-subunit, such as exon37a and exon37b splice variants, may 

lead to improvement of drug specificity for modulating N-type 
channel activity in pain processing. Both exon37a and exon37b 
are mutually exclusive and encode 32 amino acids of the proxi-
mal c-terminal region of the N-type channel that differ by 14 
amino acids.5,81 Exon37a has been shown to be almost exclu-
sively expressed in capsaicin-sensitive nociceptive DRG neurons 
and support increased N-type current densities.5,82 Specifically, 

 electrophysiology studies have revealed that ω-agatoxin IVA 
has a minimal effect on monosynaptic C- and Aδ-fiber inputs, 
but a strong effect on polysynaptic nociceptive transmission.54 
Together, findings from these studies suggest that P/Q-type 
channels are likely localized on interneurons and play a role in 
modulating synaptic transmission in the spinal dorsal horn.

In animal models, data regarding the role of Ca
V
2.1 P/Q-type 

channels in pain processing are not consistent. In neuropathic 
pain models, intrathecal administration of ω-agatoxin IVA to 
block P/Q-type channels has no effect on mechanical allodynia 
and thermal hyperalgesia.41,55 Deleting Ca

V
2.1 in mice results 

in no change in nociceptive responses to non-injurious noxious 
thermal stimuli.56 These data suggest an anti-nociceptive role of 
P/Q-type channels. However, mice with spontaneously occur-
ring P/Q-type channel mutations show decreased sensitivity to 
nociceptive stimuli,57 and deletion of Ca

V
2.1 in mice results in 

reduced nociceptive responses in inflammatory and neuropathic 
pain models.56 For visceral pain states, Q-type channels are found 
to be important for acute bladder nociception at the spinal level.58 
Together, it is likely that the role of P/Q-type channels on pain 
processing depends on the etiology of nociception.

N-Type Voltage-Gated Calcium Channels

Ca
V
2.2 N-type channels are highly concentrated in neuronal 

cells including those involved in sensory signal processing such 
as spinal dorsal horn neurons, dorsal root ganglion cell bodies 
and their central terminals that form synaptic connections with 
spinal dorsal horn neurons.49,59,60 The colocalization of these 
channels with pain-inducing neurotransmitters33 and functional 
blockage of substance P, CGRP and glutamate release by N-type 
channel antagonists51,61-63 suggest a major role of the N-type 
channel in controlling synaptic transmission in pain processing, 
especially in C- and Aδ-nociceptors. It has been reported that 
Ca

V
2.2 N-type channels are upregulated in spinal dorsal horn 

during the initiation and maintenance stages of pain states after 
peripheral nerve injury.64 Thus, blocking synaptic transmission 
via N-type channels could serve as a prime target for reducing 
pain signal transmission to the central nervous system.

Small peptide inhibitors of N-type channels from cone snail 
toxins have been used to study the functional roles of these 
channels in pain processing. ω-conotoxins MVIIA (SNX-111, 
ziconotide or Prialt) and GVIA were used to examine their inter-
action with specific gating states of N-type channels.65 Originally, 
ω-conotoxins are thought to block the N-type channel pores com-
pletely by binding to amino acid residues just outside the pore to 
diminish calcium influx,66 which may lead to adverse side effects. 
Recent studies, however, show that ω-conotoxin GVIA is able 
to modulate the gating properties of N-type channels, thereby 
leading to a reduction in action potential-induced calcium influx 
by ~50% without blocking the pore.67 In addition, ω-conotoxin 
GVIA binding can destabilize the open state and alter gating 
transitions between closed states of N-type channels,67,68 which 
can reduce pain-inducing neurotransmitter release in the dorsal 
horn. This is in contrast with findings that ω-conotoxin MVIIA 
blocks all gating states.69 This discrepancy may derive from the 
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are involved in shaping action potentials,  regulating neuronal 
 firing patterns, lowering action potential thresholds, promoting 
burst firing, oscillatory behavior and enhancing synaptic excita-
tion.21 T-type channel activation close to the resting potential 
allows calcium influx in response to sub-threshold synaptic input 
when the cells are at rest, and enhances the neuronal excitabil-
ity by boosting synaptic inputs and lowering the threshold for 
high-threshold spike generation.100-102 In addition, Ca

V
3 T-type 

channels form complexes with low-voltage-activated A-type 
potassium channels, allowing the potassium channels to regulate 
neuronal firing at a subthreshold membrane potential range.103 
Thus, blocking the T-type channel can lead to overall reduction 
of neuronal excitability.

Data from animal studies suggest that functional contri-
bution of T-type channels to pain processing varies based on 
their modalities, subtypes and anatomical locations. Increased 
T-type channel currents are found in small DRG neurons fol-
lowing chronic constriction injury of the sciatic nerve,104 but in 
medium-size DRG neurons following chemical-induced diabetic 
neuropathy.105 These changes may lead to increased excitability 
(lowered activation threshold) of sensory neurons that can con-
tribute to the pathological pain responses such as mechanical 
alloydynia and thermal hyperalgesia observed in both models. 
T-type  channels are implicated in the development of chronic 
musculoskeletal pain syndromes, as mice deficient in Ca

V
3.2 

fail to develop acid-induced chronic mechanical hyperalgesia.106 
Moreover, mice lacking Ca

V
3.2 show a hypoalgesic response 

to acute, somatic,  visceral and tonic inflammatory insults, 
altogether suggesting that Ca

V
3.2 T-type channels play a pro-

nociceptive role in processing of noxious stimulation.107 This is 
further supported by data indicating that Ca

V
3.2 expression is 

increased in DRG in diabetic neuropathy and mechanical nerve 
injury models,108,109 and knock down of Ca

V
3.2 by siRNA or anti-

sense oligonucleotides results in anti-nociceptive effects in these 
pain models.96,108,110 In addition, Ca

V
3.1 deficient mice show a 

reduction in nerve injury-induced behavioral hypersensitivity, 
suggesting that Ca

V
3.1 may also be a contributor to neuropathic 

pain processing.111 However, Ca
V
3.1 deletion in mice leads to an 

increase in visceral pain, similar to what is observed following 
thalamic infusion of T-type channel blockers. This suggests that 
Ca

V
3.1 T-type channels in the thalamus are anti-nociceptive.112 
Since T-type channels are subjected to dysregulation under 

some pain-inducing conditions, normalizing dysregulated T-type 
channels thus represents an attractive alternative strategy in 
developing novel pain medications. It has been reported that 
inhibiting T-type channels using non-selective T-type channel 
antagonists such as ethosuximide and mibefradil, effectively 
blocks and reverses both tactile hypersensitivity and thermal 
hyperalgesia in pain models.113,114 These non-selective antagonists 
inhibit input spikes, indicative of diminished synaptic activity, 
probably through a reduction in exocytosis of neurotransmitter 
from primary afferent neurons.113 Furthermore, Ca

V
3.2 T-type 

channel-dependent activation of extracellular signal-regulated 
kinase (ERK) in the anterior nucleus of paraventricular thalamus 
correlates with acid-induced chronic hyperalgesia, and inhibiting 
ERK activation in wild-type mice prevents chronic mechanical 

exon37a containing channels remain open longer upon activation 
compared to those containing exon37b.5,82 Silencing exon37a via 
siRNA in vivo reduces basal thermal nociception and develop-
ment of thermal and mechanical hyperalgesia during inflamma-
tory and neuropathic pain states.3 Voltage-dependent G protein 
inhibition of N-type channels is indistinguishable between 
exon37a and exon37b isoforms.24,83 However, exon37a appears to 
confer a greater susceptibility to voltage-independent inhibition 
of N-type channel currents through a mechanism involving Gi/o 
subunits and kinase-dependent phosphorylation.9,24 A tyrosine 
encoded within exon37a, but not exon37b, acts as a molecular 
switch in controlling N-type channel current density and volt-
age-independent inhibition that ultimately leads to modulation 
of nociception.24 Furthermore, exon37a regulates the extent of 
μ-opioid receptor-mediated inhibition of N-type channels, and 
the absence of exon37a results in reduced morphine-induced 
analgesia without affecting basal response to noxious thermal 
stimuli.81

R-Type Voltage-Gated Calcium Channels

Ca
V
2.3 R-type channels are classified as being “resistant” to 

inhibitors of other high-voltage-activated L-, N-, P- and Q-type 
channels. The R-type channels are found in neuronal cells and 
may play a role in regulating neurotransmitter release and neuro-
nal excitability.84,85 Ca

V
2.3 channels have been suggested to con-

tribute to pain transmission by regulating both nociceptive and 
anti-nociceptive behaviors through spinal and supraspinal mech-
anisms as shown in mutant mice lacking the Ca

V
2.3 R-type chan-

nels.86 Data from a recent study have shown that SNX-482, a 
selective R-type channel antagonist from tarantula venom, inhib-
its C- and Aδ-fiber-mediated dorsal horn neuronal responses and 
neuropathic pain states in nerve-injured rats, suggesting that 
R-type channels may contribute to central sensitization in the 
spinal cord during neuropathic pain processing.87 This is sup-
ported by data from a tissue injury model in which SNX-482 
treatment increased behavioral sensitivity during the first phase 
of formalin-induced pain response but produced analgesic effects 
in the second phase of the formalin-test, which is considered a 
centrally mediated nociceptive response.88

T-Type Voltage-Gated Calcium Channels

Unlike Ca
V
1 and Ca

V
2 channels, Ca

V
3 T-type channels activate 

at hyperpolarized levels, close to resting potentials (low voltage 
thresholds). The T-type channels are expressed in tissues through-
out the body, including the heart, smooth muscles, pancreas, 
kidney and neuronal tissues.35,89-93 It appears that T-type chan-
nels consist of α

1
-subunits that do not associate with auxiliary 

subunits.94,95 In sensory pathways, T-type channels are located on 
primary afferent terminals and dorsal root ganglia, with Ca

V
3.2 

being the most abundant isoform in the DRG, and thus the 
T-type channel subtype capable of the most prominent role in 
nociception.96-98 Mechanisms underlying T-type channel regu-
lation and neuronal functions have been reviewed recently.21,99 
Data from electrophysiology studies suggest that T-type channels 
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from nerve-injured rats that show DRG α
2
δ-1 upregulation and 

behavioral hypersensitivity.123,129-131 This contradicts data from 
α

2
δ-1 overexpressing transgenic mice in which increased cal-

cium currents in isolated DRG neurons correlate with behavioral 
hypersensitivity.126 This discrepancy may be due to additional 
modulatory effects from other injury factor(s) that are missing 
in the α

2
δ-1 overexpressing mice (without injury). At the spinal 

level, it appears that elevated α
2
δ-1 mediates behavioral hyper-

sensitivity through enhanced excitatory pre-synaptic input that 
activates glutamate receptors at post-synaptic dorsal horn neu-
rons.131 The mechanism of this neuroplasticity in pain process-
ing is not yet clear, but data from recent studies have suggested 
that injury-induced increase of α

2
δ-1 in DRG leads to increased 

trafficking of α
2
δ-1 proteins to the pre-synaptic terminals that 

may cause increased VGCC expression and VGCC-mediated 
neurotransmission.121,122,133,134 This process may ultimately lead to 
abnormal synaptogenesis.135,136 Since both processes are sensitive 
to blockade by gabapentinoids,121,133,136 normalizing these cellular 
maladaptive changes in pain-inducing conditions may underlie a 
chronic mechanism of gabapentinoid drugs in pain relief.

Summary

VGCCs are widely expressed and distributed throughout the 
body and play an obligatory role in important physiological 
functions. The specificity of VGCC functions derives from tis-
sue-specific distribution of VGCC subtypes, their coupling to 
unique intracellular signaling pathways and interactions with 
other proteins, that are critical in mediating cellular functions. 
Preclinical data have implicated the involvement of dysregula-
tion and/or malfunctions of VGCC subtypes in pain process-
ing. This includes, but is not limited to, changes in expression 
and regulation of VGCC subtypes/subunits, and alterations in 
functional interactions of VGCC subtypes with other proteins or 
cellular molecules/co-factors that directly or indirectly modulate 
abnormal VGCC functions in pain pathways. Thus, normalizing 
these pathological maladaptive changes in different pain-induc-
ing etiologies represents an attractive approach for designing the 
next generation of pain medications that should be more target-
specific and have fewer side effects. This could also be achieved 
by modifying existing VGCC drugs to improve their efficacy and 
toxicity profiles. As discussed in a recent review in reference 137, 
some of these drugs are in the pipeline and our better under-
standing of VGCC functions in pain processing will eventually 
lead to more promising pain medications.
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hyperalgesia.106 The endogenous reducing agent, L-cysteine, 
selectively and potently enhances T-type channel currents and 
promotes cutaneous thermal and mechanical hyperalgesia. In 
contrast, the oxidizing agent, 5,5'-dithio-bis-(2-nitrobenzoic 
acid), inhibits T-type channel currents in small dorsal root gan-
glia and alleviates hyperalgesia in pain models.115,116 Hydrogen 
sulfide, a gasotransmitter, has also been implicated as a neuro-
modulator in sensory transmission by activating Ca

V
3.2 channels 

in primary afferents and in spinal nociceptive neurons, thus lead-
ing to sensitization of nociceptive processing and hyperalgesia.117 
Treatment with inhibitors of T-type channels or of cystathionine-
γ-lyase (CSE), an enzyme involved in hydrogen sulfide forma-
tion, causes a reversal of hyperalgesia and allodynia in spinal 
nerve injured rats that show an upregulation of Ca

V
3.2, but not 
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